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Abstract: Lithology and fluid discrimination are the two foremost objectives in any seismic reservoir
characterization project. To delineate and predict hydrocarbon reservoirs, based on an understanding of
seismic responses resulting from enhanced seismic interpretation and subsurface modeling, a modified form of
the Zoeppritz equation was used to generate Extended Elastic Impedance (EEI) logs and volumes. Sensitivity
analyses of the absolute Acoustic Impedance and the derived Extended Elastic Impedance (EEI) at zero angle
were performed and the results from both of log correlation and crossplot analyses show that at zero incidence
angle these attributes exhibit similar response in characterization of the reservoir but the volume analyses show
that the sensitivity of the derived equation is more than that of the regular absolute acoustic impedance. The
results from the inversion show that Extended Elastic Impedance at zero degree angle of incidence delineates
and highlights gas-saturated reservoirs better than the Acoustic Impedance especially in environments where
Acoustic Impedance alone cannot delineate hydrocarbon zones.
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I. Introduction

The product of the P-wave velocity and rock density is the Acoustic Impedance (Al). Al is not an
interface property but a rock property [1]. Though the generation of 3-D petrophysical property models and 3-D
facies models are based on the Al models [1-2], still Al is a bad fluid indicator where the upper and lower
reservoir formations have approximately equal acoustic properties [3]. This limitation and others were resolved
by use of the Extended Elastic Impedance (EEI) [4-7]. This work highlights the sensitivity of the Extended
Elastic Impedance (EEI) attributes generated from a modified Zoeppritz equation with respect to acoustic
impedance in the determination and delineation of hydrocarbon reservoirs.

The Extended Elastic Impedance (EEI) is the modified extension of the Elastic Impedance (EI) method
conducted by [7] by replacing the function sin?6 due to limitation in angle of incident range, to a new function
(tan x) with a wider range (from —oo to + o0) [3-10]. This equation is then multiplied by cos y for normalization
so that reflectivity value is never more than one [3-10]. Elastic impedance (Equation 1) is a generalization of
acoustic impedance for non-normal angles of incidence and is a pseudo-property or seismic attribute developed
by [4-5].

El(e) =Vp (1+tan26)vs(—8Ksin ze)p(1—4}(sin26) .

Though Elastic Impedance provided good results and useful guides for enhanced reservoir characterization,
there was restriction of incidence angle [4-5] and another key problem was that El has strange unit and
dimensions therefore their values do not scale correctly for different angles [6-10].

The difference between the Extended Elastic Impedance (EEI) and normalized version of Elastic Impedance

(EI) is the change of variable. EEI is a function of i (an angle in an abstract construction) and El is a function of
0 (an angel in a physical experiment) [6-10]. EEI allows the use of a range of physically non-meaningful
incident angles by substituting tany for sin? in the two-term reflectivity equation. Thus, the primary variable
now becomes y rather than 0 and it is varied from -90 to 90° [6-10]. The expression for the normalized version
of Elastic Impedance (EI) and the Extended Elastic Impedance (EEI) are shown in Equations 2 and 3.

EI(8) = Vp,p, [VP(1+tan29)Vs(—8KsinZe)p(1—41<sinze)] )
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= <P 2]
ee16 = con 2] [2]'[2 ;
Where o = Vp = P — wave velocity, § = V5 = S — wave velocity,
p =density, p = cos(x) - sin(x), g = —8Ksin(y) andr = cos(x) - 4Ksin(yx) 4

ay, By, and py : the average of P velocity, S velocity, and density respectively.
2
K is the average of (g) in the time/depth interval according to [11].

1. Material And Methods
The materials used for this study are 3D Pre-stack time migrated seismic data and a complete suite of

well logs. Basically, we assume a relationship, possibly linear, between the rock physical properties (P- and S-
wave velocities, density, impedances, bulk modulus, shear modulus, Lamé’s parameter , pseudo-poisson ratio
e.t.c) and seismic reflections, that is, the rock attributes of the formations were examined to create a relationship
between the petrophysical data and elastic properties. The Extended Elastic Impedance (EEI) log spectrum is
generated and inverted to create an EEI () volume output.

Aki-Richards approximation [12] of Zoeppritz equation [13] was reformulated (Equation 5) in terms of
Pseudo Poisson’ ratio reflectivity, Aq/q, rigidity reflectivity, Au/u, and density reflectivity, Ap/p [14 -15],
and using the same derivation procedure as in [5] and [7] on the modified Zoeppritz equation, we derived the
new Elastic Impedance and Extended Elastic Impedance respectively in terms of Pseudo-Poisson’s ratio,
rigidity and density (Equations 6 — 7) for effective fluid and lithology discrimination [14 — 15].

14 2g) 4 101 (sec0 4 (Vs\E o0 f 100 (g 1o o2

Zq(1+tan B)+2u< 5 4(VP) sin 9)+2p(1 5 sec 9) 5
secze_ Vs\ 2 1

1) = qhronte, S ) :

where P-wave velocity (Vp or o), S-wave velocity (Vs or B), density (p), shear modulus () and (q) is Pseudo-
Poisson’s ratio [14 — 15].

— 136200 1% [T [2] 2]
EEIG) = [36%“0%] [qo] [uo] [Po] !
By, qo, 1y, and p, are references values of P-impedance, Pseudo-Poisson ratio, shear modulus and density,
respectively [14 — 15].

I11. Result and Discussion
Four wells with several zones of interest were analyzed. Gamma log was used to determine the

lithology of each zone in the wells. A low gamma value shows a sand formation while shale formations were
indicated by high gamma values. Validation of the Extended Elastic Impedance (EEI) attributes from Modified
Zoeppritz Equation was carried out by log correlation and crossplot analysis.

Figure 1 shows the correlation between modeled Al, EI (0), derived EI (0) and EEI (0) log for Well 15
and Well 16. The red curves are the derived EEI (0) curves generated at y = 0, the blue curves are the Model
EI(0) from well-log data, the magenta curves are the derived EI (0) and the yellow curves are the Al generated
from well log data. The derived EEI log and EI (0) log and Model EI (0) log at zero degree corresponds to Al as
seen by the overlap of the log plots. This indicates that our equations are valid as they approximate the absolute
acoustic impedance at zero incidence angle as expected.

Crossplot analysis was carried out in Well 15 and Well 16 for all the target zones to characterize
reservoir in terms of fluid type and lithology. Figures 2 - 5 (a — d), show the crossplot of Acoustic Impedance
(Al), Elastic Impedance (EIl) at zero degree incidence angle, the derived Elastic Impedance (El) at zero
incidence angle and the Extended Elastic Impedance (EEI) at zero degree incidence angle versus Density
respectively, for all the target zones. This is a three-dimensional crossplot color coded with Gamma ray. The
crossplots show that at zero angle of incidence these attributes exhibit similar response in characterization of the
reservoir.
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Results of RMS Amplitude Slices
RMS amplitude extraction was performed for the interpreted horizons, within a time window of 25ms
in the reservoir. The RMS amplitude attribute relates to the variations in P-impedance over the selected interval.
Figure 6 (a — c¢) show the extracted RMS amplitude maps for horizons 1b2, 2a and 3b respectively.
High RMS amplitude values were observed indicating hydrocarbon zones and low RMS amplitude values
observed indicating shale/brine flooded zones. High RMS amplitude values were also observed away from the
Wells location indicating possible bypassed hydrocarbon charge areas.
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Fliglure 1: Correlation plots between Al, EI(0) and derived El (0) and EEI(O)I-og for Wells 15, 16,17 and 19
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Figure 2: AI EI(0), Derived EIEO) and Derived EEI(0) vversus Density cros:g-plot for all the target zones in Well
15 colour coded with Gamma ray.
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Figure 3: Al, EI (0), Derived EI (0) and Derived EEI(0) versus Density cross plot for all the target zones in
Well 16 colour coded with Gamma ray.
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Figure 4: Al, EI(0), Derived El (0) and Derived EEI(0) versus Density cross plot for all the target zones in Well
17 colour coded with Gamma ray.
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Figure 5: Al, EI(0), Derived EI (0) and Derived EEI(0) versus Density cross plot for all the target zones in Well
19 colour coded with Gamma ray.
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Figure 6: RMS Amplitude extraction on horizons (a) hor 1b2, (b) hor 2a and (c) hor 3b respectively
from seismic volume.
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The Acoustic Impedance (Al) and the Extended Elastic Impedance (EEI) generated from the modified
In Figure 7 (a — c), a low Acoustic Impedance (Al) values
especially at well locations (Well 15, 16, and 17) which indicate hydrocarbon bearing sands at the horizons
horlb2, hor 2a and hor 3b slice respectively were observed while Well 19 lies in high Acoustic Impedance (Al)
zones indicating flooding zone. Lower P-wave velocity is observed in reservoir rock containing fluids that is oil
and gas which is compressible, by implication hydrocarbon bearing sands will have a lower Acoustic Impedance
(Al) value than water bearing sands. From the results the Extended Elastic Impedance (EEI) inversions were
robust in fluid and lithology discrimination more than the Acoustic Impedance.

Zoeppritz equation were inverted at zero angle.
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Figure 7: Comparing the data slice of inverted EEI-0 with P-impedance amplitude at hor 1b2, hor 2aand hor
3b (a — c) respectively with a window of 25ms centered.
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IV. Conclusion

The modified Zoeppritz equation was used to generate Elastic Impedance (El) and Extended Elastic
Impedance (EEI) attributes which were found to be effective for lithology and fluid discrimination.

The results of the analyses show that Al, El, derived EIl and EEI at zero angle of incidences exhibit
similar responses in characterizating reservoir zones and this validates our mofification to the Zoeppritz
equation. The results show that the Extended Elastic Impedance (EEI) attribute effectively discriminates
fluids and lithologies and thus highlights differences between reservoir and non reservoir zones. Finally, the
results from the Extended Elastic impedance (EEI) inversion have shown the sensitivity and importance of
conducting an Extended Elastic impedance (EEI) inversion especially in environment where Acoustic
impedance (Al) alone cannot delineate hydrocarbon zones.
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